首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   91篇
  国内免费   45篇
  2023年   10篇
  2022年   6篇
  2021年   21篇
  2020年   23篇
  2019年   25篇
  2018年   30篇
  2017年   25篇
  2016年   29篇
  2015年   32篇
  2014年   77篇
  2013年   90篇
  2012年   58篇
  2011年   81篇
  2010年   43篇
  2009年   87篇
  2008年   58篇
  2007年   71篇
  2006年   56篇
  2005年   42篇
  2004年   37篇
  2003年   41篇
  2002年   27篇
  2001年   14篇
  2000年   15篇
  1999年   20篇
  1998年   14篇
  1997年   13篇
  1996年   14篇
  1995年   7篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
101.
Qi JL  Zhu YG  Shang H  Ji F  Zhu Q  Sun M 《遗传》2011,33(10):1141-1146
苏云金芽胞杆菌幕虫亚种YBT-020具有典型的晶胞粘连表型。在前期的研究中,通过质粒消除实验,推测晶胞粘连现象与YBT-020内生质粒pBMB28有关。为了定位质粒pBMB28上控制晶胞粘连表型的基因,首先对质粒pBMB28进行克隆。利用穿梭载体pEMB0557,成功构建了苏云金芽胞杆菌YBT-020的基因组人工染色体(BAC)文库。前期的研究表明晶体蛋白基因cry28Aa定位在质粒pBMB28上,根据cry28Aa基因序列设计引物,从文库中筛选到含有cry28Aa的重组质粒pBMB231。镜检和SDS-PAGE证明质粒pBMB231转化无晶体突变株BMB171形成的重组子BMB231可以产生Cry28Aa晶体蛋白,但不能恢复晶胞粘连表型。对重组质粒pBMB231的插入片段末端序列测定并设计引物筛选文库,通过染色体步移方式得到4个可以重叠覆盖质粒pBMB28不同区域的克隆子,从而克隆了该质粒。对这4个克隆子末端测序和酶切分析,测算出该质粒的大小约为140 kb。进一步确定应用基因组BAC文库以及重叠片段筛选的方法,可以快速有效的克隆苏云金芽胞杆菌大质粒。  相似文献   
102.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers.  相似文献   
103.
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.  相似文献   
104.
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture.  相似文献   
105.
106.
N-terminal acetylation is one of the most common modifications, occurring on the vast majority of eukaryotic proteins. Saccharomyces cerevisiae contains three major NATs, designated NatA, NatB, and NatC, with each having catalytic subunits Ard1p, Nat3p, and Mak3p, respectively. Gautschi et al. (Gautschi et al. [2003] Mol Cell Biol 23: 7403) previously demonstrated with peptide crosslinking experiments that NatA is bound to ribosomes. In our studies, biochemical fractionation in linear sucrose density gradients revealed that all of the NATs are associated with mono- and polyribosome fractions. However only a minor portion of Nat3p colocalized with the polyribosomes. Disruption of the polyribosomes did not cause dissociation of the NATs from ribosomal subparticles. The NAT auxiliary subunits, Nat1p and Mdm20p, apparently are required for efficient binding of the corresponding catalytic subunits to the ribosomes. Deletions of the genes corresponding to auxiliary subunits significantly diminish the protein levels of the catalytic subunits, especially Nat3p, while deletions of the catalytic subunits produced less effect on the stability of Nat1p and Mdm20p. Also two ribosomal proteins, Rpl25p and Rpl35p, were identified in a TAP-affinity purified NatA sample. Moreover, Ard1p copurifies with Rpl35p-TAP. We suggest that these two ribosomal proteins, which are in close proximity to the ribosomal exit tunnel, may play a role in NatA attachment to the ribosome.  相似文献   
107.
This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices.  相似文献   
108.
Phosphate-activated glutaminase is present at high levels in the cerebellar mossy fiber terminals. The role of this enzyme for the production of glutamate from glutamine in the parallel-fiber terminals is unclear. In order to address this, we used light miroscopic immunoperoxidase and electron microscopic immunogold methods to study the localization of glutamate in rat cerbellar slices incubated with physiological K+ (3 mmol/L) and depolarizing K+ (40 mmol/L) concentrations, and during depolarizing conditions with the addition of glutamine and the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine. During K+-induced depolarization glutamate labeling was redistributed from parallel-fiber terminals to glial cells. The nerve terminal content of glutamate was sustained when the slices were supplied with glutamine, which also reduced the accumulation of glutamate in glia. In spite of glutamine supplementation, the depolarized slices treated with 6-diazo-5-oxo-l-norleucine showed depletion of glutamate from parallel-fiber terminals and accumulation in glial cells. We conclude that cerebellar parallel-fiber terminals contain a glutaminase activity enabling them to synthesize glutamate from glutamine. Our results confirm that this is also true for the mossy fiber terminals. In addition, we show that, like for glutamate, the levels of aspartate in parallel-fiber terminals and GABA in Golgi fiber terminals can be maintained during depolarization if glutamine is present. This process is dependent on the activity of a glutaminase, as it can be inhibited by 6-diazo-5-oxo-l-norleucine, suggesting that the glutaminase reaction is important for glutamine to act as a precursor also for aspartate and GABA. The low levels of the kidney type of glutaminase that previously has been shown to be present in the parallel and Golgi fiber terminals could be sufficient to produce the transmitter amino acids. Alternatively, the amino acids could be produced from the liver type of glutaminase, which is not yet localized on the cellular level, or from an unknown glutminase.  相似文献   
109.
Stephanie Fanucchi 《FEBS letters》2009,583(22):3557-3562
A novel survival role of focal adhesion kinase (FAK) that involves its nuclear translocation and direct association with p53 has been demonstrated. Here we examined the relationship between the p53/FAK interaction and Ser46 phosphorylation of p53 (p-p53Ser46) in the apoptotic regulation of human esophageal squamous cell carcinoma (HOSCC) cell lines, expressing either wild type (wt) p53 or mutant (mt) p53-R175H. In contrast to the wt p53 cell lines, the mt p53-R175H cell line was resistant to staurosporine (STS)-mediated detachment and caspase-3 activation. Furthermore, despite the resistance of mt p53-R175H to Ser46 phosphorylation, both wt and mt HOSCC cells translocate FAK into the nucleus and maintain the p53/FAK interaction post STS treatment. These findings provide unique insight into how tumor cells harboring the R175H mutant may resist chemotherapeutic intervention.

Structured summary

MINT-7294020: FAK (uniprotkb:Q05397) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti-bait coimmunoprecipitation (MI:0006)  相似文献   
110.
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号